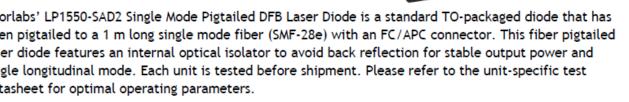
Lecture #04

Semiconductor Lasers : Practical LD and Handling

Bikash Nakarmi

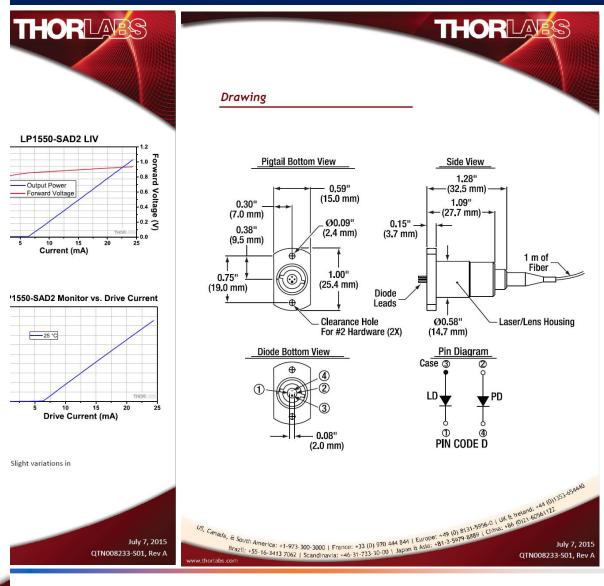
Nanjing University of Aeronautics and Astronautics

Practical Laser Diodes and Handling


a. Device Specifications

b. Packaging

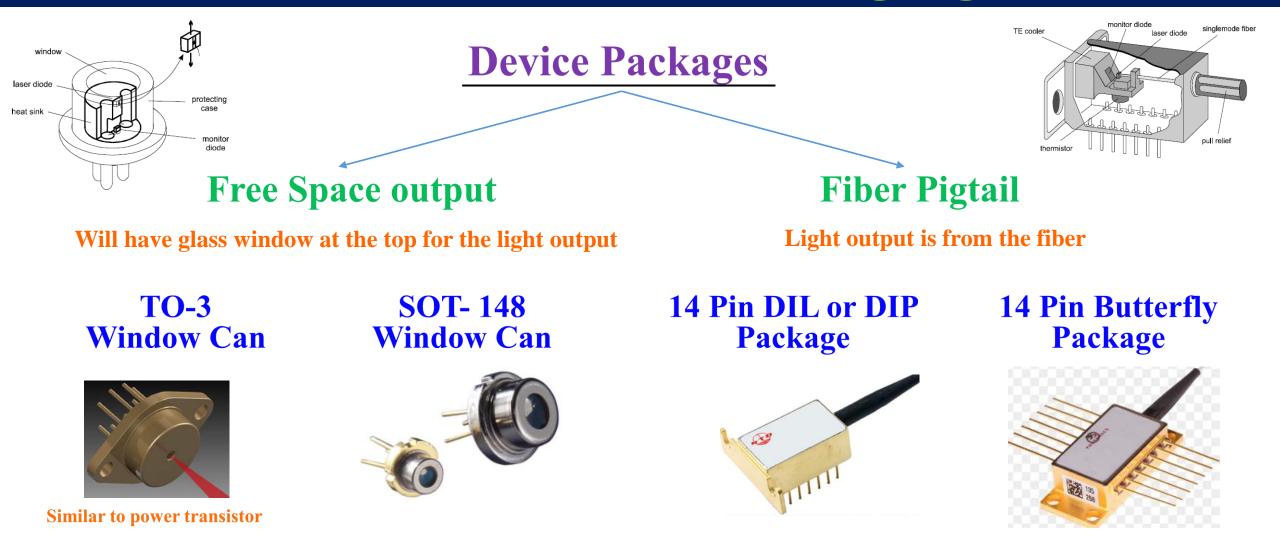
c. Safety of the Device


d. Safety of the User

escription

pecifications Absolute Maximum Ratings Reverse Voltage (Max) 2 V 10 V Reverse Voltage (Max) solute Max Current 40 mA solute Max Power 3 mW NOTICE -10 to 65 °C orage Temperature To avoid equipment damage from **Physical Specifications** electrostatic discharge Wear ESD wriststrap n Code 5D when handling this SMF-28e ber FC/APC nnector LP1550-SAD2 Specifications Symbol Min Typical Max nter Wavelength* 1547 nm 1553 nm λc 1550 nm Pop pical Output Power* 2.0 mW erating Current @ P_{op} = 2 mW * 20 mA 40 mA lop 35 °C mperature Tuning Range TTR 15 °C reshold Current* ITH 6 mA 20 mA le Mode Suppression Ratio (SMSR) SMSR 35 dB 40 dB avelength Shift over Current Δλ/ ΔΙ 0.005 nm/mA avelength Shift over Temperature $\Delta\lambda/\Delta T$ 0.1 nm/°C erating Voltage @ Pop = 2 mW* VF 1.0 V 2.0 V onitor Current @ Pop 1000 µA IPD 120 µA pe Efficiency @ Pop = 2 mW * ΔΡ/ΔΙ 0.2 mW/mA ser Linewidth (-20 dB) @ Pop = 2 mW * 1.0 nm Δν 0.1 nm

e Specifications

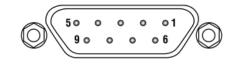


ications

0

Femperature = 25 °C

Laser Diodes : Packaging



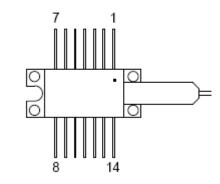
Laser Diodes : Packaging

Pigtailed External Cavity (ECL) Single-Frequency Lasers, Butterfly Package



Laser Diode Connector D-type Female

Pin #	Signal	
1	Interlock and Status Pin (LDC Specific)	
2	Photodiode Cathode PDC	
3	Laser Diode Anode LDA	
4	Photodiode Anode PDA	
5	Interlock and Status Return	
6	Laser Diode Voltage (-) VLD(-)	
7	Laser Diode Cathode LDC	
8	Not Used	
9	Laser Diode Voltage (+) VLD(+)	


TEC Connector D-type Male

Pin #	Signal		
1	TEC Lockout (+)		
2	+Thermistor TH+		
3	-Thermistor TH_GND		
4	TEC (+)		
5	TEC (-) and TEC Lockout (-)		
6	Not Used		
7	Not Used		
8	Not Used		
9	Not Used		

Pin Identification					
1	TEC +	14	TEC -		
2	Thermistor	13	Case		
3	NC	12	NC		
4	NC	11	LD +		
5	Thermistor	10	LD -		
6	NC	9	NC		
7	NC	8	NC		

Type 1 14 Pin Butterfly Pin Diagram

Handling LDs: Safety of User

Classification		Output power P _{out}	Precautions
Class I		Few µW to few tens of µw	Safe lasers
Class II		< 1mW	Avoid direct exposure to the eyes
Class	IIIa	1mW to 10 mW	Avoid direct exposure
	IIIb	10mW to 100 mW	Laser googles and avoid direct exposure on body parts
Class IV		> Few hundred mW	Need all safety precautions and "interlocking arrangement "

Handling LDs: Safety of Devices

All high speed devices are sensitive to ESD

$$i = \frac{dq}{dt}$$

- If the charges passes through a very short time the current will be very high.
- ***** Devices very high speed then current will be very high
- ***** Important in the high speed components

Grounded Mats Grounded Straps : wire have to go to the central node with a 1 mega ohm resistance

Handling LDs: Set-up of a Laser

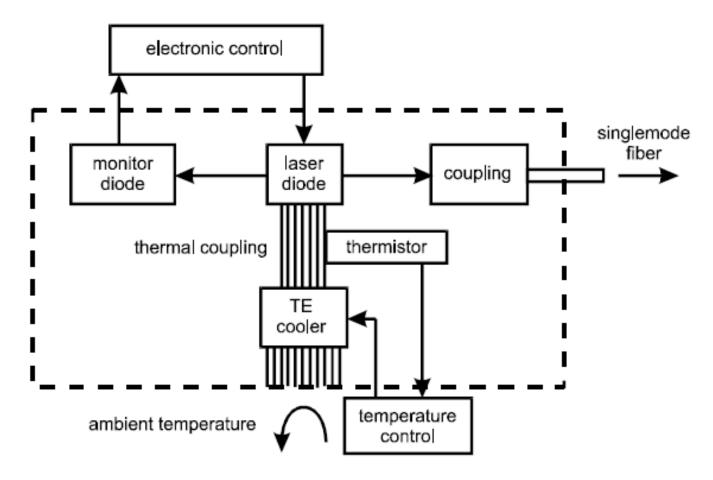
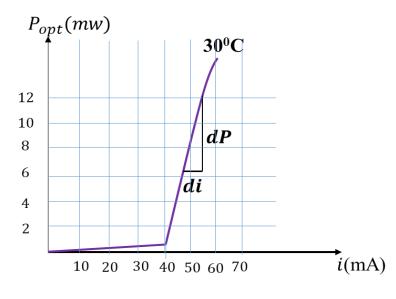



Figure Set up of a laser module

Assignment

 For the given typical parameter of laser diode as follows, what is the transparent current at T=30°C and T=40 °C. Also, plot the graph for P_{optical} when the temperature is raised to 40°C showing threshold current. Scattering loss due to inhomogeneity = 20 cm⁻¹; Absorption co-efficient= 600 cm⁻¹; Length of the cavity= 285 μm; Reflectivity of cavity mirrors are 32%

Temperature coefficient $T_0 = 140K$

