Semiconductor Lasers : Output Characteristics & SM Lasers

Bikash Nakarmi

Nanjing University of Aeronautics and Astronautics

OUTLINES

I. Output Characteristics of Laser

- a. Threshold Current
- **b.** Confinement Factor
- c. Spatial Profile
- d. Longitudinal modes
- **II. Single Mode lasers**
 - a. ECL
 - **b. DFB & DBR lasers**
 - c. VCSELs
 - d. Quantum Lasers

Basic Laser Theory

Oscillator = Gain Medium + Feedback (Resonator)

Peak Gain coefficient:
$$\gamma_p = \alpha_a \left(\frac{\Delta n}{\Delta n_T} - 1 \right)$$

For steady state oscillation : Gain = Resonator loss

threshold peak Gain coefficient:
$$\gamma_{pt} = \alpha_r = \alpha_s + \frac{1}{2l} ln\left(\frac{1}{R_1R_2}\right)$$

Typical Values:-

$$\alpha_s \approx 22 cm^{-1} \qquad l = 300 \mu m$$

$$\alpha_a \approx 600 cm^{-1} \qquad R_1 = R_2 = 0.32$$

$$\gamma_{pt} = 60 cm^{-1}$$

Basic theory

Fall 2023

Why the threshold current increase with increase in the temperature?

Output Characteristics: Threshold current

 $\alpha_a \left(\frac{\Delta n_t}{\Delta n_T} - 1 \right) = \alpha_r$ $\alpha_r = \alpha_a \left(\frac{J_t}{J_T} - 1 \right)$ $\therefore J_t = J_T \left(1 + \frac{\alpha_r}{\alpha_a} \right)$

Fig. Threshold current variation with temperature

Double heterojunction

Fall 2023

Output Characteristics: Confinement Factor, *I*

Confinement factor, $\Gamma \rightarrow$ fractional energy in the active region

 $0 < \Gamma < 1$

cavity gain = $\Gamma \gamma_p$

$$\Gamma \gamma_p = \alpha_r = \Gamma \alpha_a \left(\frac{J_t}{J_T} - 1 \right) \qquad V \text{ number, } V = \frac{2\pi}{\lambda} d \sqrt{n_1^2 - n_2^2} \qquad d \downarrow V \downarrow \beta \uparrow \Gamma$$
$$\therefore J_t = J_T \left(1 + \frac{\alpha_r}{\Gamma \alpha_a} \right)$$

penetration depth, $\frac{1}{\gamma} \rightarrow = 1/\sqrt{\beta^2 - k_0^2 n_2^2}$

Output Characteristics: Confinement Factor,

Laser and Its Applications

Fall 2023

Output Characteristics: Spatial Profile

Fall 2023

Output Characteristics: Longitudinal Modes

Laser and Its Applications

Fall 2023

Output Characteristics: Spectral linewidth

 $\Delta \lambda \rightarrow linewidth$

Typical:-

 $\Delta\lambda \sim 20 - 40 \text{ nm for LED}$ $\sim 2 - 3 \text{ nm for FP lasers}$ $\leq 0.1 \text{ nm for DFB lasers, VCSELS}$

Equivalence:-

 $\Delta\lambda \leftrightarrow \Delta\nu$ $c = \nu\lambda \Longrightarrow \nu = \frac{c}{\lambda}$ $\Delta\nu = \frac{c}{\lambda^{2}} (-\Delta\lambda)$ $\Delta\nu = 1.55 \ \mu m$ $\Delta\lambda = 1 \ nm \Longrightarrow \Delta\nu = 125 \ GHz$ $\Delta\nu = 100 \ GHz \Longrightarrow \Delta\lambda = 0.80 \ nm$ $\Delta\nu = 100 \ MHz \Longrightarrow \Delta\lambda = 0.00080 \ nm$

 $I(\lambda)$

Output Characteristics: Spectral linewidth

Importance of Narrow linewidth

In DWDM

 $\Delta\lambda$ (source linewidth) $\ll \delta\lambda$ (channel spacing)

For 100 GHz channel spacing: $\delta \lambda = 0.8 nm$ For 50 GHz channel spacing : $\delta \lambda = 0.4 nm$

 $\Rightarrow \Delta \lambda < 0.1$ nm or smaller for no channel overlap

Dispersion in fiber link

Dispersion parameter:
$$D = \frac{\Delta \tau}{L\Delta \lambda} ps/km \cdot nm$$
 GHz
 $\Rightarrow \Delta \tau = D \times L \times \Delta \lambda$

 $\Delta \tau$: Temperoal spread of a pulse L: length of the link $\Delta \lambda$: Source Linewidth

 \Rightarrow smaller the $\Delta\lambda$, smaller is the spreading of the pulse, $\Delta\tau$

 \Rightarrow larger bit rates are possible without ISI

Output Characteristics: multi-longitudinal mode oscillation

Those modes which have gain more than loss will be able to oscillate leading to multi – frequency oscillation.

In the figure shown above, oscillation will occur at *Eight* frequencies

Output Characteristics: Single Frequency Oscillation

Multi-frequency oscillation leads to large source linewidth

Why the etalon of small thickness is used?

Single Frequency Lasers: External cavity

At a given angle, the only one frequency will be selected which satisfy the above equation Lossy cavity for other wavelengths *Maximum tuning up to 50 nm for ECL*

Fall 2023

Single Frequency Lasers: DFB Laser

For resonant backward reflection: $\frac{2\pi}{\lambda_0} n_{eff} 2\Lambda = q \times 2\pi$; q = 1 for first order grating Required grating period: $\Lambda = \frac{\lambda_0}{n_{eff}}$ n_{eff} : effective index of the guided mode $\approx n_{average}$

Fall 2023

Single Frequency Lasers: DFB Laser

Single Frequency Lasers: DFB Laser

Fall 2023

Output spectrum of DFB Laser

Single Frequency Lasers: Output Spectrum

Fall 2023

Single Frequency Lasers: DBR

Fall 2023

Single Frequency Lasers: DBR

DFB Laser

 $\lambda_b = 2n_{eff}\Lambda$

- wavelength fixed when fabricated the corrugation.
- * However refractive index of the medium n_{eff} which is depend on the injection current.
- Depending upon the energy level difference greater and lesser than Eg which determines whether the active medium acts as gain or absorber.

Plane wave : $\psi = Ae^{i(\omega t - kz)}$; $k = k_o n$ = $Ae^{i\omega t}e^{-ik_o n_r}e^{-k_o n_i z}$

 $\begin{array}{ll} n = n_r - in_i & I = |\psi|^2 = A^2 e^{-2k_0 n_i z} \\ n_i > 0 \rightarrow Absorbing & I(z) = |\psi|^2 = I_0 e^{-2k_0 n_i z} \\ n_i < 0 \rightarrow Gain & \end{array}$

DBR Laser

Fall 2023

Why are the end facets of a DFB laser chip provided with AR coating

To prevent reflections from the end facets that could lead to the formation of Fabry-Perot cavity/resonances.

Single Frequency Lasers: VCSELs

Vertical Cavity Surface Emitting Laser, VCSELs > Variation of DBR Laser

Single Frequency Lasers: VCSELs

Use for High density data interconnects in computer design

For Example:

For equilibrium for resonator

 $\alpha_r = \gamma = \alpha_s + \alpha_m$

 $\gamma = 50 cm^{-1}$ $\alpha_s = 10 \sim 50 cm^{-1}$

For minimum values of α_s

$$\alpha_m = 40 cm^{-1}$$
$$= \frac{1}{2l} ln \left(\frac{1}{R_1 R_2}\right)$$

For normal laser diodes

 $R_1 = R_2 \sim 32\%$ lower percentage

For VCSELs and DBR

 $R_1 = R_2 \ge 90\%$ higher value

For $R_1 = R_2 = R$ $\therefore l = \frac{1}{40} ln\left(\frac{1}{R}\right)$

For different values of R	
$R=0.32 \longrightarrow$	l≈ 285 µm
$R=0.9 \longrightarrow$	$l \approx 10 \ \mu m$
$R=0.99 \longrightarrow$	$l \approx 2.5 \ \mu m$
$R=0.998 \longrightarrow$	$l \approx 0.2 \ \mu m$

Laser and Its Applications

Fall 2023

Single Frequency Lasers: VCSELs

Vertical cross section of a VCSEL

Single Frequency Lasers: Bragg Reflectors

$$R=0.32 \longrightarrow l \approx 285 \,\mu m$$

$$R=0.9 \longrightarrow l \approx 10 \ \mu m$$

 $R=0.998 \longrightarrow l \approx 0.2 \ \mu m$

<u>Reflectivity of a periodic stack of "high"</u> and "low" index layer is given by

Why VCSELs have only a single wavelength and greater FSR?

Answer of Quiz # 2

Due to Bragg stacks Cavity length is small

In VCSELs the cavity length is about 10 µm hence FSR is large and normally the bandwidth of the amplifier cannot cover the more than one longitudinal mode and hence most of the cases VCSELs are SM lasers.

Single Frequency Lasers: Tunable DBR

- two section structure
- Biased separately for two structure
- Frequency selection due to change in Refractive index and Bragg grating frequency
- Tuning range is from 5 nm to 10 nm

Single Frequency Lasers: Tunable DFB

 ♦ Change in Temperature : bandgap changes and hence emitting wavelength changes
 ♦ Only small tunable range of 1~3 nm
 ♦ $\Delta\lambda$ = 0.1nm/oC

Most of the Lasers have the Quantum Well in Active region

Density of states in Quantum well structures

quantum well energy number with quantum well thickness

Fall 2023

Semiconductor laser double heterojunction laser, where the thickness of active layer is less than de Broglie wavelength of electrons (200 Armstrong to 5 nm which give quantization and gives discrete level of energy)

Lower threshold

Less sensitive to temperature variation

- $T_0 \sim 140 \ K \ for \ FP \ lasers$
- $T_0 \sim 400 K$ for QW lasers

$$i_t(T) = i_t(T_r)e^{\left(\frac{T-T_r}{T_0}\right)}$$

larger the value of T_0 less shift in temperature

- Carrier distribution is less sensitive to the temperature due to the transition level need to be changed as discrete energy level unlike the bulk lasers
- In QW lasers with increase in temperature there is less non radiative transition hence quantum efficiency, η_i is relatively large and quantum efficiency is less effective with temperature

Gain coefficient

Fig. 1 Gain as a function of Energy

For QW lasers

 \int_{T}^{bulk}

 \int_{T}^{QW}

- d is less then we expect threshold to go which is because of confinement factor $\boldsymbol{\Gamma}$ in heterojunction
- In QW lasers although the confinement factor is small gain is much higher for QW well and quantum efficiency is very high and $f_{q}(v)$ increase rapidly
- Net effect even we have less value of d, less the threshold current

Fall 2023

Single Frequency Lasers: MQW

MQW lasers

- Active level comprises of multiple quantum well structures comprises of identical potential wells and barriers.
- Barrier thickness is sufficiently large so that electron wave function does not interact with each other.
- Identical not interacting wells
- Enhancement of effective gamma with one overall optical field
- Higher optical output power as overall active area increases
- Typical 2 to 6 QW layer

Assignment# 03

- 1. Why DBR laser have better frequency stability compared to the DFB laser?
- 2. Why the reflectivity R is chosen higher value in VCSELs?
- 3. Why the coupling efficiency of VCSELs is better than Fabry perot lasers?

4. For the given typical parameter of laser diode as follows, what is the transparent current at $T=30^{\circ}C$ and $T=40^{\circ}C$. Also, plot the graph for $P_{optical}$ when the temperature is raised to 40°C showing threshold current.

Scattering loss due to inhomogeneity = 20 cm^{-1} ; Absorption co-efficient= 600 cm^{-1} ; Length of the cavity= $285 \mu \text{m}$; Reflectivity of cavity mirrors are 32%

