

Lasers & Its Applications

Lecture #01 Fundamentals of Laser

Bikash Nakarmi

Laser and Its Applications

Outlines

Chapter I. Basics of Photonics & Laser

Chapter II. Types of Lasers & Output Characteristics

Chapter III. FPLD and operating Principle

Chapter IV. Lasers & Applications

Digital Photonics Robust Radar Signal Generation RADAR Interference and Imaging

Term paper presentation

Reference Books & Evaluation

- 1. Laser Electronics by Joseph T. Verdeyen
- 2. Optical Fiber communication by keiser
- 3. Selected journals

Lecture #01 Fundamentals of Laser

Information and Communication

Page 4

Fall 2023

Laser and Its Applications

Photonics

Increasing wavelength decreasing energy.

Each photon have discrete energy which is shown by the equation. Photons are the fundamental building blocks of light

Photonics

Photonics: "Photonics" comes from "photon"
-the smallest unit of light.
-packet of electromagnetic energy to Ground state
perform various functions in information
processing systems.

"Photonics is the generation, process and manipulation of photon to achieve a certain function.

How photon produce

Excitation

Electron is

Four Basic Elements of Electronics and Photonics

Electronics	Photonics	
electrons as carrier vectors	carrier vectors can be photons, solitons, light balls, or plasmons	
the generators	Lasers and spasers	
transistors	plasmonsters and optical transistors	
electrical cables and circuits	optical wave guides and optical fibers act as the transport cables	

Photonics in Action

Photonics is the science of the photon, the fundamental particle of light.

How Photonics is used

computing, data centre, sensors

Sources of Light

Hot Objects

Natural Light Sources

Mostly used for light purposes

LED

Artificial Light Sources

Semiconductor devices that emits visible light when an electric current passes through it.

Light Amplified by Stimulation Emission of Radiation, LASER

Sources of Light

	LED	LD	LED EMISSION
Beam generation	Spontaneous Emission	Stimulated Emission	Spectral output is broad $\sim k_{\rm B}T$ Temporal response is limited by spontaneous emission
Beam Directivity	No	Yes	Improvement
Spectrum Width	40nm	0.01nm (single mode)	Use an optical cavity to enhance emission of Use stimulated emission to enhance e-h
Response Time	few nsec (Not appropriate for high speed transmission)	0.01nsec	certain photon states
Driving Circuit	Simple	Complex, Temp Cont required, expensive	e-h recombination in a high quality optical cavity
Application	Short reach and small band comm.	Long haul and broadband Transmission	Light Amplified by Stimulation Emission of Radiation, LASER

Laser Fundamentals

Why

Light Amplified by Stimulation Emission of Radiation, LASER ${\bf \hat{z}}$

- Lasers have unique Properties
- Created many devices
- Improved existing devices

Laser Fundamentals: Examples of laser applications

1. High Monochromaticity / Narrow Spectral Width/ High Temporal Coherence

High Monochromaticity / Narrow Spectral Width / High Temporal Coherence

High Temporal Coherence

- Radiation time without phase interruption is very high τ very long
- $\Delta f \approx 1/\tau$ is very small
- Can predict amplitude and phase at any time at a given position

Application of narrow spectral width

- Communication
- Spectroscopy
- Interferometry
- Holography
- Sensors

2. Highly Collimated (Diffraction limited) / Very small focused spot/ High Spatial

 $\Theta = h/f$ $\Theta = h/f$ $\Theta \approx \lambda/D$ Beam diameter D Laser with diffraction limited

Diffraction-limited collimation

• No dependence on the source size

due to basic physics of electromagnetics radiation

• only with λ and **D**

Applications: Alignment, bar code readers, communication, radar

+

2**0**

Light source collimation

Depends on h and f

2h

Highly Collimated (Diffraction limited) / Very small focused spot/ High Spatial Coherence

Applications: compact discs, laser printers, material processing, surgery

Highly Collimated (Diffraction limited) / Very small focused spot/ High Spatial Coherence

- Wave well behaved in space
- Can predict amplitude and phase at any position at a given time

	Temporal Coherence	Spatial coherence
Tel	Concerned with phase correlation of waves at a <i>given point in space at two different instant of time</i>	Concerned with the phase correlation of <i>two different points across a wave front at a given instant of time</i>
× ×	Coherence related with <i>time</i>	Coherence related with <i>position</i>
	Longitudinal coherence	Transverse coherence
$\langle \rangle \rangle$	Related to <i>frequency bandwidth of the</i> source	Related to the <i>size of the source</i>

3. High Power

- CW or PULSED
- CW laser power can power from milliwatt to megawatt
- Pulsed laser can go from Giga watt to exawatt

Applications: Material processing, Fusion, Military, Nonlinear optics, and more

LASER

4. Wide Tuning Range

Applications:

- Interaction with specific atoms & molecules
- Spectroscopy (dye laser)
- Propagation
- Medical

Absorption spectrum

5. Short pulse widths

Applications:

- Fast phenomena
- Optical computers
- Radar
- imaging

Pulse width is the time during which the laser output power remains continuously above all of its maximum value (FWHM). The pulse width can vary from nanosecond to picosecond to femtosecond.

Laser Fundamentals: Oscillator (1)

Laser and Its Applications

Frequency domain

Need things for oscillator:

- Low loss resonator, resonator gives the required frequency of oscillation
- A means to overcome the loss at resonance frequency

Laser Fundamentals: Resonator

Optical Resonator determines

- Longitudinal Mode ——> Resonance frequency
- Transverse mode
 Field Distribution

Laser and Its Applications

Laser Fundamentals: Resonator

Stable Cavity

- A stable optical cavity consists of two or more optical elements (usually mirrors) in which a ray will eventually replicate itself
- Have low diffraction loss
- Stable cavities have smaller mode volume
- Useful for low-gain, low-volume lasers

unstable Cavity

- > In an unstable cavity, *rays do not replicate themselves*
- Each trip through the cavity will take the ray further from the optic axis, resulting in high diffraction losses
- > Useful for high-gain, high-volume lasers

Two flat mirrors, the flat-flat laser cavity, is difficult to align and maintain aligned.

Two concave curved mirrors, the usually stable laser cavity, is generally easy to align and maintain aligned

Laser Fundamentals: Ray Matrix

Table 1. Ray Matrices for Various Simple Optical Elements ^a				
Diagram	Matrix			
	$\begin{bmatrix} 1 & L \\ 0 & 1 \end{bmatrix}$			
-	$\begin{bmatrix} 1 & 0 \\ -1/f & 1 \end{bmatrix}$			
n1 n2	$\begin{bmatrix} 1 & 0 \\ 0 & n_1/n_2 \end{bmatrix}$			
	Matrices for Various Elements ^a Diagram \downarrow \downarrow z_1 z_2 \uparrow r_1 r_2			

Employ the ABCD-matrix approach, in which case the cavity is stable if

q must repeat itself after a round trip:

 $q = \frac{Aq + B}{Cq + D} \longrightarrow Cq^2 + (D - A)q - B = 0$

q must be complex, hence $(D-A)^2 + 4BC < 0$

Since AD-BC=1 $(D + A)^2 < 4$

Stability condition: $\left|-1 < \left(\frac{A+D}{2}\right) < 1\right|$ (re-derived)

Where,

$$g_1 = 1 - \frac{d}{R_1}; \quad g_2 = 1 - \frac{d}{R_2}$$

 $0 \leq g_1 g_2 \leq 1$

The ABCD matrix for a round trip of a cavity comprising two mirrors with radii R1 and R2 separated by a distance d

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -\frac{2}{R_{1}} & 1 \end{bmatrix} \begin{bmatrix} 1 & d \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -\frac{2}{R_{2}} & 1 \end{bmatrix} \begin{bmatrix} 1 & d \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 - \frac{2d}{R_{2}} & 2d - \frac{2d^{2}}{R_{2}} \\ \frac{4d}{R_{1}R_{2}} - \frac{2}{R_{1}} - \frac{2}{R_{2}} & 1 + \frac{4d^{2}}{R_{1}R_{2}} - \frac{4d}{R_{1}} - \frac{2d}{R_{2}} \end{bmatrix}$$

If d is the mirror separation and the mirror's radii of curvature are R1 and R2, then the cavity will be stable if and only if

$$\leq \frac{\left(1-\frac{2d}{R_2}\right)+\left(1+\frac{4d^2}{R_1R_2}-\frac{4d}{R_1}-\frac{2d}{R_2}\right)+2}{4}\leq 1$$

When simplified, this expression becomes

6

$$0 \le \left(1 - \frac{d}{R_1}\right) \left(1 - \frac{d}{R_2}\right) \le 1$$

$$0 \le g_1 g_2 \le 1$$

$$g_1 \equiv 1 - rac{d}{R_1}$$
 and $g_2 \equiv 1 - rac{d}{R_2}$

The two mirror cavity stability criteria

Laser and Its Applications

 $f = \frac{R}{2}$

 $R = \infty$

Solution: The first step is to unwrap the cavity. Due to the symmetry of this cavity, it is only necessary to go from M_1 to M_4 before an equivalent position is reached.

$$\begin{array}{c} A & B \\ C & D \end{array} \Big]_{1/2} = \left[\begin{array}{c} 1 - \frac{4d_1 + 2d_2}{R} + \frac{4d_1d_2}{R^2} \\ & 1 - \frac{4d_1 + 2d_2}{R} + \frac{4d_1d_2}{R^2} \end{array} \right] \\ \\ \left| \frac{R^2 - (4d_1 + 2d_2)R + 4d_1d_2}{R^2} \right| \le 1 \end{array}$$

 d_1

Laser Fundamentals:

Transverse mode: Field Distribution

Semiconductor laser

• A means to overcome the loss at resonance frequency

Laser Fundamentals: Gaussian Beam

Gaussian beam wave equation to our concept and assumption

Plane Wave

spherical wave)

Laser and Its Applications

Laser Fundamentals: Gaussian Beam

Laser Fundamentals: Gaussian Beam

Gaussian Beam Spot, Radius and Phase

w(Z): Gaussian beam width at distance z along the beam

w₀: Beam waist;

b: depth of focus;

Z_R: Rayleigh range;

O: Total angular spread

The expressions for the spot size, radius of curvature, and phase shift:

$$w(z) = w_0 \sqrt{1 + \left(\frac{Z}{Z_R}\right)^2}$$
$$R(z) = Z + \frac{Z_R^2}{Z}$$
$$\psi(z) = \arctan\left(\frac{Z}{Z_R}\right)$$

 Z_{R} Q_{0} Z_{R} Z_{0} Z_{0} R(z) W_{z} W_{z} W_{z}

where:

 Z_R the Rayleigh Range (the distance over which the beam remains about the same diameter), and it's given by $Z_R = \frac{\pi w_0^2}{\lambda}$

Fall 2023

Laser and Its Applications

Fall 2023

Laser Fundamentals: Gaussian Beam

Gaussian Beam Collimation

Twice the Rayleigh range is the distance over which the beam remains about the same size, that is, remains "collimated."

Waist spot size w ₀	Collimation Distance λ = 10.6 μm	Collimation Distance λ = 0.633 μm
.225 cm	0.003 km	0.045 km
2.25 cm	0.3 km	5 km
22.5 cm	30 km	500 km

$$2z_R = 2\pi w_0^2 / \lambda$$

Tightly focused laser beams expand quickly. Weakly focused beams expand less quickly, but still expand. As a result, it's very difficult to shoot down a missile with a laser.

Longer wavelengths expand faster than shorter ones.

A means to overcome the loss at resonance frequency

Active medium becomes gain medium when

$$E_{fc} - E_{fv} > E_g$$

Semiconductor laser

Photons are interacted in 3 different ways with the atoms

- Absorption of the radiation
- Spontaneous emission
- Stimulated emission

Population inversion in 3-level laser Population inversion in 4-level laser 2 (1) 3 1 3 0 Normal distribution Normal distribution of electrons of electrons E4 Non-radiative E2 emission Non-radiative emission ____E2 E₂ Population **E**1 inversion Absorption 4**9**_ E⁄ 5 (4) 6 Absorption **666666** E3 Spontaneous Population inversion (5) 6 4 emission E2 Es Non-radiative Ea emission E₂ 1 Spontaneous Stimulated emission emission Stimulated emission Electron 🥥 Photon Q

Gain = Loss

resonator loss,
$$\alpha_r = \alpha_{S^+} \alpha_m$$

$$= \alpha_s + \frac{1}{2L} ln\left(\frac{1}{R_1 R_2}\right)$$

In semiconductor loss

- α_s 10 to 50 cm-1
- α_m = 38 cm-1 for 0.32 reflectivity and 300
- And resonator loss is about α_r 60 cm-1 for 22 scattering loss

Loss in resonator

- Scattering loss in the medium
- Diffraction losses
- Losses due to the finite reflectivity of the mirror

"Gain Saturation"

The important thing is in steady state gain coefficient equals to loss coefficient

Laser Fundamentals:

Gain and Loss plot on steady state

Laser Fundamentals:

Assignment # 01

1. How the short pulse can be obtained?

2. Discuss Gain saturation in the laser dynamics

Laser Fundamentals

Laser Fundamentals: Summary video

Laser Fundamentals

